

Elevated blood pressure levels among 533 167 adults living in Sub-Saharan Africa: a systematic review and meta-analysis

Alexander Chen ¹, Yih-Kai Chan ², Ana O. Mocumbi ^{3,4}, Justin Beilby ¹, Dike B. Ojji ^{5,6}, Karen Sliwa ⁶, Albertino Damasceno ⁴, and Simon Stewart ^{3,6,7*}

¹Centre for Cardiovascular Research, Torrens University Australia, 88 Wakefield Street, Adelaide, SA, 5000, Australia; ²Mary MacKillop Institute for Health Research, Australian Catholic University, 8/18 Brunswick St, Fitzroy, VIC, 3065, Australia; ³Faculty of Medicine, Universidade Eduardo Mondlane, Av. Patrice Lumumba, 1345, Maputo, Mozambique; ⁴Instituto Nacional de Saúde, N1 Marracuene, Maputo, Mozambique; ⁵Department of Internal Medicine, Faculty of Clinical Sciences, University of Abuja, Mohammed Maccido Road, Airport Rd, Abuja, Nigeria; ⁶Department of Medicine, Cape Heart Institute, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa; and ⁷Institute for Health Research, University of Notre Dame Australia, 19 Mouat Street, Fremantle, WA 6160, Australia

Received 5 September 2025; revised 15 September 2025; accepted 4 November 2025; online publish-ahead-of-print 14 November 2025

Aims

Synthesizing contemporary data from sub-Saharan African countries, we did a systematic review and meta-analysis of blood pressure (BP) levels and hypertension among adults living in the region.

Methods and results

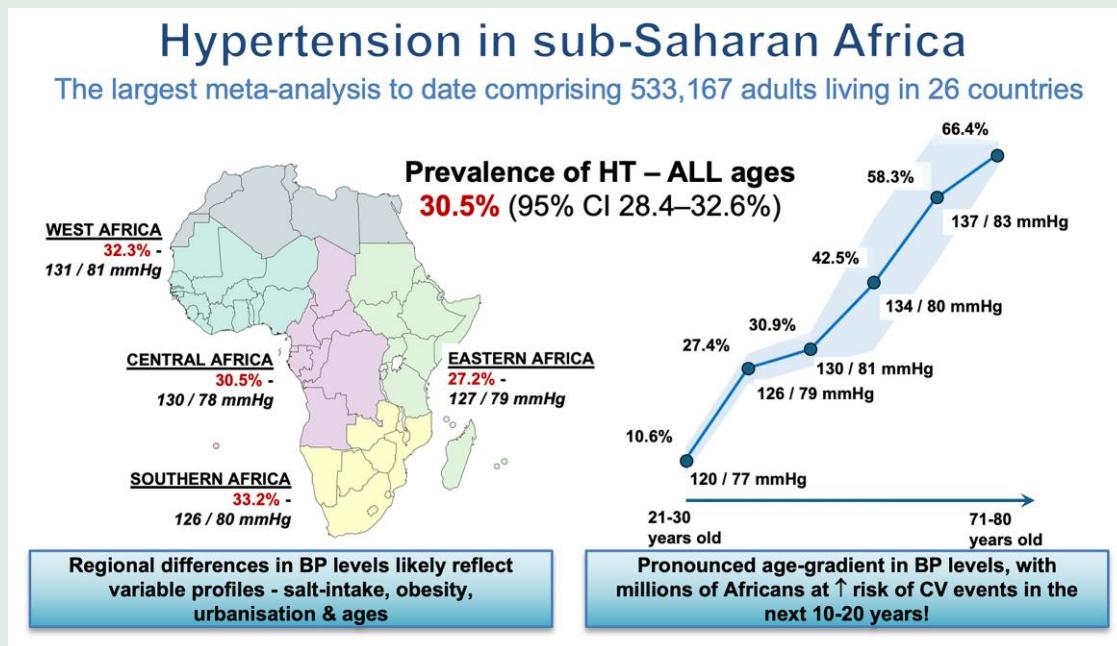
We searched PubMed and other databases to identify studies published from 1 January 2010 to 31 December 2021. We used a random-effects model to estimate the pooled-prevalence of hypertension and mean systolic/diastolic BP overall and on a sex- and age-specific basis. Heterogeneity (I^2) was assessed via the χ^2 test on Cochran's Q statistic. We identified 170 high-quality studies (195 samples) comprising 533 167 adults living in 26 countries. The pooled prevalence of hypertension was 30.5% (95% CI 28.4–32.6%). Overall mean systolic/diastolic BP was 128 (95% CI 127–129)/80 (95% CI 79–80) mmHg, with males recording higher mean BP levels (3.10 [95% CI 2.30–3.90]/0.69 [95% CI 0.10–1.29] mmHg) compared with females. Reflecting increasingly higher BP levels with age, the pooled estimates of hypertension prevalence initially rose three-fold (from 10.6% [95% CI 8.2–13.0%] to 30.9% [95% CI 27.8–34.0%]) in those aged 21–30 to 41–50 years, and then two-fold to 66.4% (95% CI 64.2–68.7%) among those aged 71–80 years, respectively. Hypertension prevalence was lower in healthy weight [28.4% (95% CI 26.1–30.6%)] compared with overweight [35.8% (95% CI 31.4–40.1%)] adults. Regionally, prevalent hypertension was lowest in those living in Eastern Africa [27.2% (95% CI 24.8–29.7%)].

Conclusion

Our findings suggest a steep age-related pattern of increasing BP levels in the region that will adversely affect millions of people within the next 10–20 years without urgent intervention.

Lay summary

A detailed review and analysis of 170 studies involving more than half a million adult men and women living in 26 sub-Saharan Africa countries, revealed that one in three have elevated blood pressure/hypertension.


- Elevated blood pressure levels, and the markedly increased risk of suffering a debilitating or fatal cardiovascular event at an early age, rose steeply from around one in ten affected at age 20–30 years to around one in three by the age of 50 years.
- Beyond the influence of age, the risk of having elevated blood pressure was different, given it increased markedly for overweight men and women, whilst those living in (mainly poorer) Eastern African countries had the lowest blood pressure levels.

* Corresponding author. Tel: +61 404 285 222, Email: simon.stewart@nd.edu.au

© The Author(s) 2025. Published by Oxford University Press on behalf of the European Society of Cardiology.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<https://creativecommons.org/licenses/by/4.0/>), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Graphical Abstract

Keywords

Hypertension • Systematic review • Meta-analysis • Sub-Saharan Africa

Introduction

Hypertension continues to be a major, preventable cause of cardiovascular events and premature deaths worldwide.^{1,2} On this basis, it is estimated that the global number of hypertensive women and men aged 30–79 years effectively doubled from 648 million to 1.28 billion between 1990 and 2019.³ Unfortunately, readily preventable and treatable hypertension continues to drive a high burden of heart and cerebrovascular disease among the 1.3 billion people living in the diverse range of 49 low-to-middle income countries comprising sub-Saharan Africa (SSA).⁴ Unlike high-income countries, many of the deadly and debilitating cardiovascular events linked to hypertension in SSA occur in younger working age people, with typically more women than men affected.^{4,5} Dynamic changes in the demographic profile, economic resources and risk behaviours of the SSA population will likely adversely influence the proportion and characteristics of those who develop hypertension.⁶ Thus, it is critical that our understanding of hypertension in SSA is continuously updated (and expanded) whenever possible.

A prior systematic review and meta-analysis of data from 110 414 community-dwelling, middle-aged adults living in 13 SSA countries in 2000–2013, reported that 30% were hypertensive.⁵ A more recent report derived from 30 044 adults living in 10 SSA countries, reported a much higher figure of 48%.⁷ Reconciling such differences in the reported prevalence of hypertension in SSA remains problematic for a number of reasons. Firstly, whilst most studies apply the same definition of hypertension found on screening [a blood pressure (BP) of 140/90 mmHg or greater], pre-existing hypertension is not always considered. Secondly, although positive age-related gradients in hypertension are consistently reported,^{5,6} to date, insufficient data are available to generate robust age-specific estimates of hypertension and associated BP levels. Lastly, reflecting an ongoing, regional challenge, the surveillance and reporting of BP levels from many low-income SSA countries is sub-optimal. Thus, we sought

to generate the largest and most representative systematic review and meta-analysis on the reported prevalence of hypertension in SSA to date. In doing so, we specifically focused on generating robust age-, sex- and region-specific estimates of hypertension that also considered the BP levels and definition(s) of hypertension underpinning them.

Methods

Search strategy and selection criteria

We searched PubMed (1664 studies initially found), Google Scholar (245 studies), African Index Medicus (137 studies), and Embase (513 studies) to identify all relevant English publications on hypertension in African adults from 1 January 2010 to 31 December 2021 (to generate contemporary data and to reduce heterogeneity between studies—*supplementary material online, Figure S1*). A search and selection strategy consisted of the combination of relevant terms and the individual names of 49 SSA countries using their English and official versions (e.g. ‘Ivory Coast’ and ‘Côte d’Ivoire’) was applied. Key search terms included ‘hypertension’, ‘blood pressure’, ‘systolic hypertension’, and ‘diastolic hypertension’. References of all relevant articles were scrutinized to identify additional data sources with inputs from AOM and DBO.

Applying the search strategy outlined above, primary studies selected for data extraction and analyses had to be observational studies with a focus on men and women aged 18 years or above residing in SSA countries, irrespective of their ethnic, socioeconomic, and educational backgrounds, reporting the prevalence of hypertension or with enough data to compute these estimates. We excluded studies on non-systemic hypertension (intracranial or pulmonary hypertension), those focussed on non-resident Africans, studies with participant selection based on the presence of hypertension (e.g. clinical trials or case-control studies), and adult samples in which it was not possible to disaggregate data for adolescents. We also excluded case series with a small sample size (<100 participants), letters, reviews, commentaries, editorials, and studies without primary data or

explicit description of methods. For studies reporting duplicated analyses, we considered the most comprehensive report and largest sample size.

Data extraction

Three investigators (AC, YKC and SS) independently extracted relevant data from individual studies using a standardized data extraction form. This included author's last name, year of publication, recruitment period, area (rural vs. urban), country, study design, setting, sample size, mean or median age, age range, proportion of male/female participants, body mass index (BMI)/weight status, method of obtaining BP levels and criteria used to identify hypertension. We assigned a United Nations Statistics Division (UNSD) for each country studied. Disagreements between authors were reconciled through discussion and consensus (all authors).

Data analysis

We evaluated the methodological quality of included studies using the tool developed by Hoy and colleagues.⁸ We assigned each item a score of 1 (yes) or 0 (no), and summed all items to generate an overall quality score that ranged from 0 to 10. We classified studies as having a low (0–3), low-medium (4–6), or high (7–10) risk of bias. We then used meta-analyses to summarize both prevalence of hypertension and reported systolic/diastolic blood pressure (SBP/DBP) levels. To be included in the prevalence meta-analysis, studies had to provide sufficient data to identify those with a SBP/DBP of 140/90 mmHg or greater (current hypertension—comprising those found to have newly discovered hypertension or those being actively treated for hypertension but with an uncontrolled BP) and/or a history of being treated for hypertension (past hypertension). In this respect, a range of definitions were used to identify hypertension irrespective of a person's BP levels found on screening. Most commonly this comprised the presence of anti-hypertensive treatment within the past 14 days, but in some cases as a history of ever receiving anti-hypertensive therapy. Study samples also had to comprise people with no specific disease/profile and describe prospective data collection.

We analysed data using Open Meta for Windows. All quantitative analyses were conducted using random-effects meta-analytic models to account for between-study heterogeneity in design, population characteristics, and measurement protocols. For dichotomous outcomes (prevalence), pooled estimates and corresponding 95% confidence intervals (95% CI) were calculated using a binary random-effects model with the DerSimonian–Laird (DL) estimator, which provides a conservative summary when true effect sizes vary across studies. To enable variance estimation in strata with zero events, a continuity correction factor of 0.5 was applied. For continuous outcomes (mean SBP/DBP), pooled mean differences and standardized mean differences were derived using inverse-variance weighting under the DL random-effects framework. Statistical heterogeneity was quantified using the I^2 statistic, with values $>50\%$ indicating substantial variability beyond chance and assessed by Cochran's Q test ($P < 0.10$). Meta-regression analyses with restricted maximum likelihood estimation were used to examine trends by age, BMI category, and region, and to evaluate the moderating effects of sex. Age-standardized prevalence estimates were recalculated using the WHO World Standard Population⁹ to ensure comparability across studies with differing age structures. Sensitivity analyses included (i) restricting to studies defining hypertension by measured BP only, (ii) comparing mercury vs. automated sphygmomanometer use, (iii) excluding moderate-to-high risk-of-bias studies (Hoy tool), and (iv) leave-one-out analyses to evaluate single-study influence.

This systematic review/meta-analysis was registered and approved in the PROSPERO International Prospective Register of systematic reviews, registration number CRD42022297948 (protocol unpublished) and reported according to PRISMA guidelines.¹⁰

Role of the funding source

This is no specific funding source. SS was supported by the NHMRC of Australia (GNT1135894). The senior corresponding author had full access

to all study data and had final responsibility for the decision to submit the paper for publication.

Results

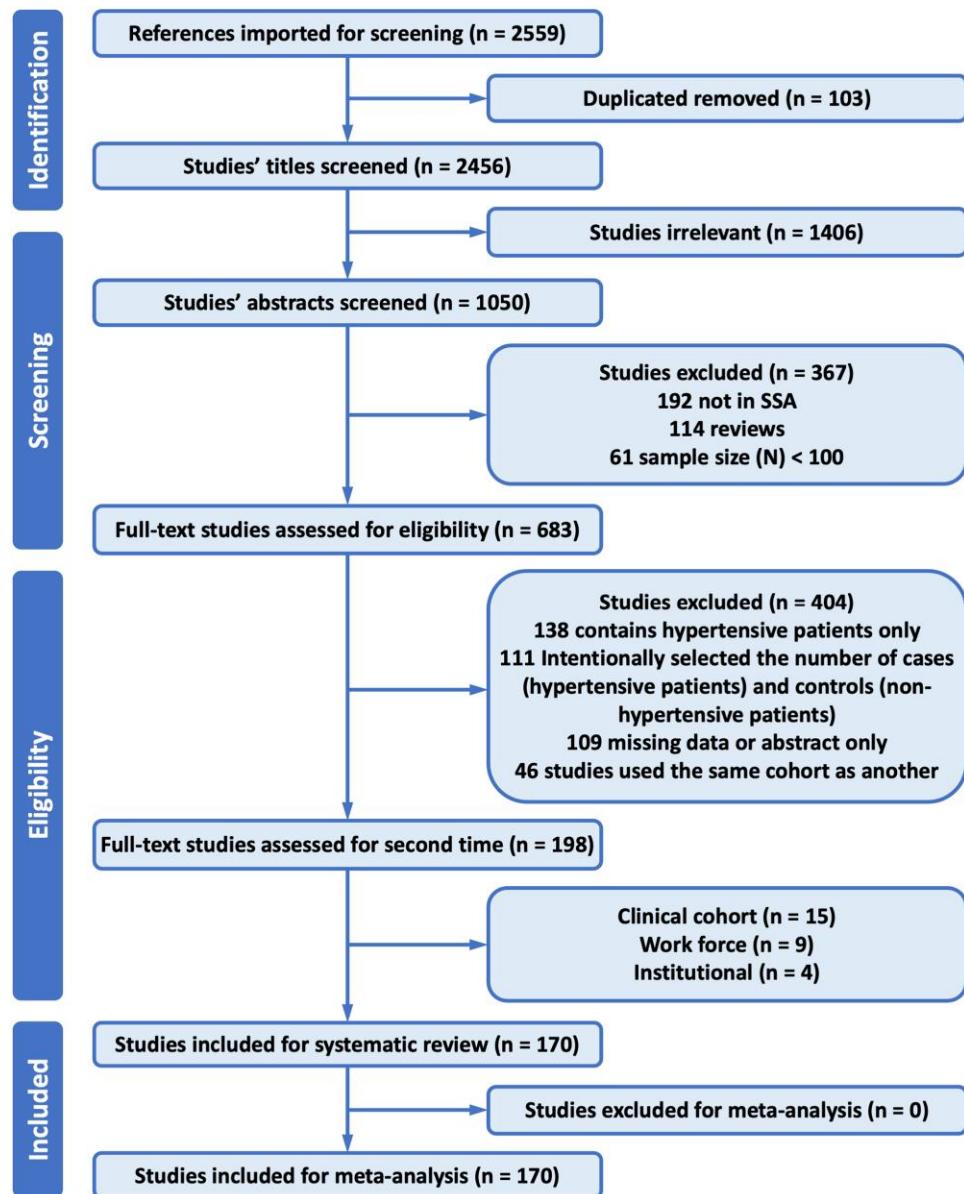
Literature search outcome

We initially identified 2559 records for further scrutiny, and after eliminating duplicates, 2456 records remained. After further excluding 2375 irrelevant or non-eligible records and 513 of the remaining 683 texts, findings from 170 full text research reports^{7,11–179} informed our meta-analyses (Figure 1). Inter-rate agreement for study selection ($\kappa = 0.84$), study inclusion ($\kappa = 0.85$) and data extraction (0.91) was high. The methodological conduct and quality of included studies is summarized in [supplementary material online, Table S1](#). All data were extracted from cross-sectional studies, with 108/170 (64%) assessed as low risk of bias and the remainder low-medium risk of bias.

The specific methods used to measure BP were heterogeneous. Accordingly, when repeated BP levels were obtained, the time taken between measurements varied (with some reports not reporting this detail) with 51/170 (30%) reporting the use of an automated digital sphygmomanometer and all but seven of the rest reporting the use of a mercury/manual sphygmomanometer. A total of 119/170 studies used a history and/or current hypertension as their definition of positive cases, with most also 'topping-up' these cases with those found to have a measured systolic/diastolic BP of 140/90 mmHg or greater. Conversely, 51/170 studies specifically identified hypertensive cases (applying the same thresholds) based on measured BP levels only.

Data from 533 167 adults (195 samples) living in 26/49 SSA countries and representing a diverse mixture of rural, peri-urban and urban communities were used to generate pooled estimates of hypertension prevalence (Figure 2). Specific data to permit analyses of mean BP levels, in addition to sex- and age-specific analyses (of hypertension and BP levels) were reported in 94/170 studies, 123/170 studies (354 248 cases) and all studies/cases, respectively.

Prevalence of hypertension


Overall, the pooled prevalence of hypertension was 30.5% (95% CI 28.4–32.6%)—see Figure 3. As shown in [supplementary material online, Table S2](#), on an age-standardized basis (using the world population as a reference point) the pooled prevalence of hypertension was slightly lower at 29.2% (95% CI 24.4–34.0%, $I^2 = 99.74\%$, $P < 0.001$).

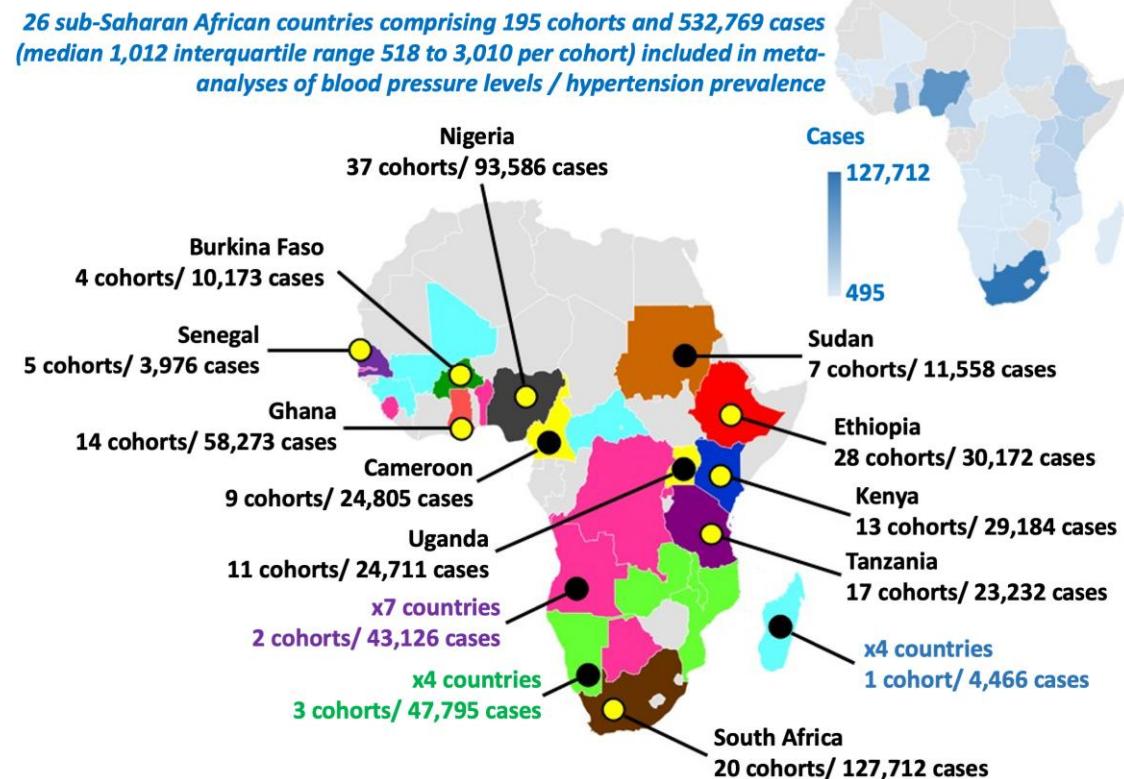
Blood pressure levels

The pooled mean systolic/diastolic BP reported was 128 (95% CI 127–129, $I^2 = 99.88\%$)/80 (95% CI 79–80, $I^2 = 99.84\%$) mmHg—see [supplementary material online, Figure S2A](#) and B.

Sex-specific findings

Overall, males were reported to have a 1.05 times higher prevalence of hypertension compared with females—[supplementary material online, Figure S3](#). Whilst this observed difference was not significant (95% CI: 0.99–1.10, $I^2 = 87.8\%$), males were found to have significantly higher mean BP than females, with a mean difference in SBP/DBP of 3.10 mmHg (95% CI: 2.30–3.90, $I^2 = 97.97\%$, $P < 0.001$)/0.69 mmHg (95% CI: 0.10–1.29, $I^2 = 98.6\%$, $P < 0.001$), respectively—[supplementary material online, Figure S4A](#) and B.

Figure 1 Study selection. *Figure 1* shows the study selection process. It consists of four stages: identification, screening, eligibility, and inclusion.


Age-specific findings

Age was found to be positively associated with hypertension prevalence and mean SBP/DBP (all $P < 0.001$)—supplementary material online, *Figure S5A–C*. The pooled prevalence of hypertension rose three-fold from 10.6% (95% CI 8.2–13.0%, $I^2 = 97.93\%$) in those aged 21–30 years to 30.9% (95% CI 27.8–34.0%, $I^2 = 99.71\%$) in those aged 41–50 years old. Thereafter, prevalent hypertension effectively doubled to 66.4% (95% CI 64.2–68.7%, $I^2 = 0\%$) in those aged to 71–80 years, with a broad plateau in BP levels in the older age groups evident, as shown in *Figure 4*. The apparent $I^2 = 0\%$ observed in the oldest age group (71–80 years) reflects the limited degrees of freedom with only two studies, rather than a true absence of heterogeneity. Among those aged over 70 years, women tended to have higher mean SBP than men, although confidence intervals overlapped. Diastolic BP levels

displayed an inverted U-shaped trajectory, rising through mid-life and declining in older ages—supplementary material online, *Figure S5C*.

Hypertension according to weight Status

The pooled prevalence of hypertension (see supplementary material online, *Figure S6*) and associated BP levels (see supplementary material online, *Figures S7A and B*) among individuals with a healthy weight were significantly lower ($P < 0.001$ for all comparisons) compared with overweight/obese individuals—being 28.4% (95% CI: 26.1–30.6%, $I^2 = 99.71\%$) vs. 35.8% (95% CI: 31.4–40.1%, $I^2 = 99.68\%$) and 127 mmHg (95% CI: 125–128, $I^2 = 99.88\%$)/79 mmHg [95% CI: 78–80, $I^2 = 99.82\%$] vs. 130 mmHg (95% CI: 128–133, $I^2 = 99.87\%$)/81 mmHg (95% CI: 79–83, $I^2 = 99.86\%$).

Figure 2 Geographical distribution of studies. *Figure 2* shows those sub-Saharan African countries (11/26 represent in meta-analyses) with 5 or more contributing studies. The rest (with one to four contributing studies) are depicted by the same colour.

Geographic distribution of hypertension

From a geographic perspective, data were derived from 26/49 SSA countries (including 9 multi-national studies), with the economically advanced countries of Nigeria and South Africa contributing to >200 000 cases. In rank order, Southern (33.2%), Western (32.3%), Central (30.5%) and Eastern Africa (27.2%) had the highest to lowest prevalence of hypertension by sub-group meta-analysis—*Figure 5* and *supplementary material online, Figure S8A—C*.

Sensitivity analyses

The pooled prevalence of hypertension was significantly lower ($P < 0.001$) among studies defining hypertension based solely on BP levels found on screening compared with other studies also considering a past history of hypertension (28.0% [95% CI: 24.3–31.6%, $I^2 = 99.71\%$] vs. 31.7% [95% CI: 29.0–32.6%, $I^2 = 99.75\%$])—*supplementary material online, Figure S9*. In terms of assessed risk of bias, the pooled prevalence estimate was 30.9% (95% CI: 28.5–33.4%, $I^2 = 99.69\%$) for studies assessed as having low risk of bias, and 29.7% (95% CI: 26.4–33.1%, $I^2 = 99.64\%$) for those with higher risk—*supplementary material online, Figure S10*. Adjusting for age, sex and weight status, the pooled mean SBP/DBP among those screened with a mercury compared with automated sphygmomanometers (see *supplementary material online, Figure S11A and B*) was 129 mmHg (95% CI: 127–131, $I^2 = 99.88\%$)/80 mmHg (95% CI: 79–81, $I^2 = 99.74\%$) vs. 128 mmHg (95% CI: 126–129, $I^2 = 99.87\%$)/

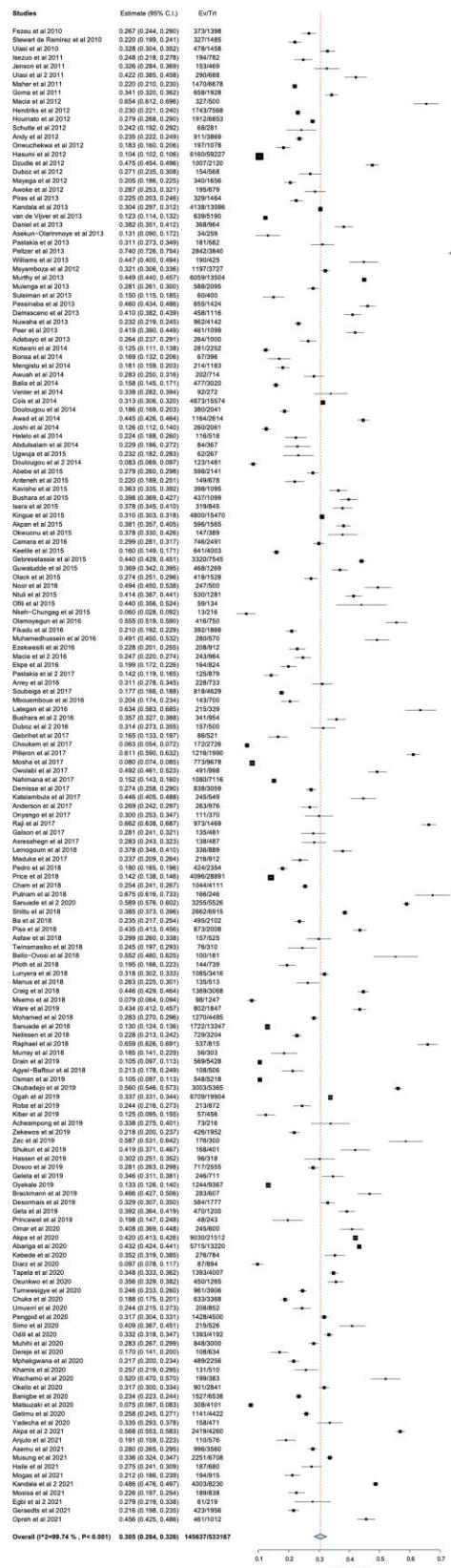
80 mmHg (95% CI: 78–81, $I^2 = 99.87\%$). Finally, a ‘leave-one-out’ analysis did not identify any study that meaningfully influenced our overall findings—*supplementary material online, Figure S12*.

Assessment of publication bias

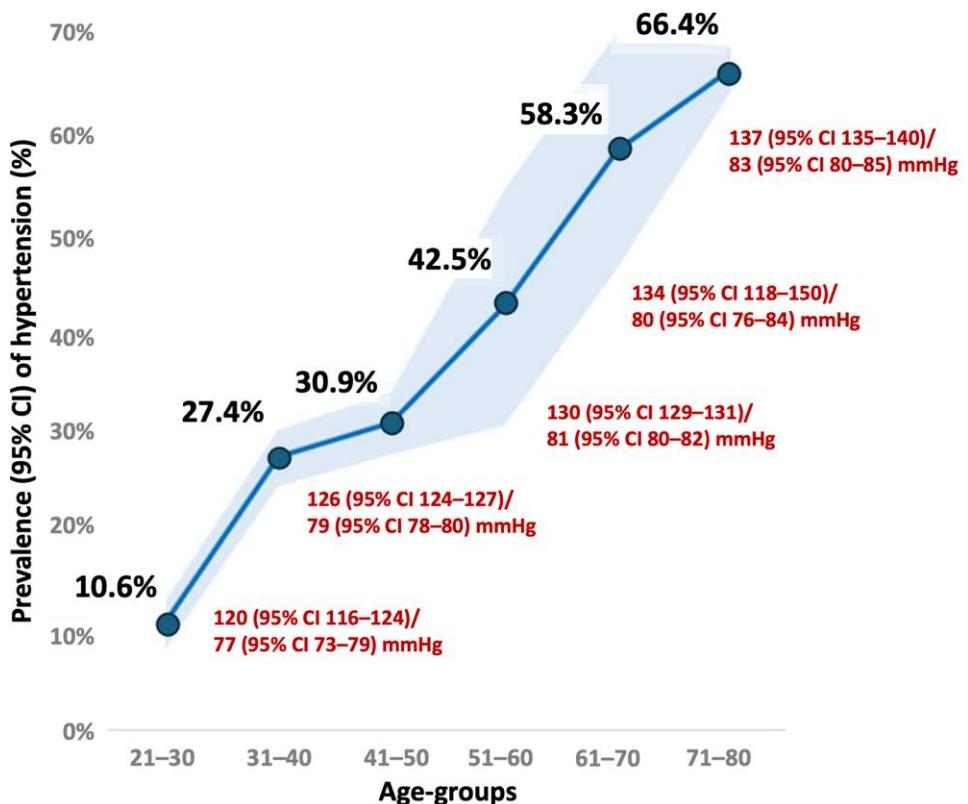
There was no evidence of publication bias across all reported outcomes. This was confirmed by both Hoy’s risk of bias tool and Egger’s test, whilst heterogeneity remained high across all parameters analysed (I^2 ranging from 87.80% to 99.88% with all $P < 0.005$).

Discussion

To our knowledge, this is the largest and most comprehensive study of hypertension and BP levels among adults living in SSA to date. Specifically, combining contemporary BP surveillance data from more than half a million men and women living in just over half of all SSA countries, our meta-analysis suggests that 28–33% of adults in the region are hypertensive, with a slightly lower prevalence range (24–32%) when considering those studies using the standard threshold of a systolic/diastolic BP of 140/90 mmHg or greater at the time of surveillance. Further analyses demonstrated minimal differences based on the type of sphygmomanometer used (mercury vs. automated) and the assessed risk of bias. While the 1.05-fold difference between men and women in terms of being hypertensive was not significant (perhaps due to heterogeneity and limited sample sizes within strata), mean


SBP levels among men were 2.30–3.90 mmHg higher than women. Overall, in both sexes, increasing age was associated with a steep gradient in BP levels and the subsequent prevalence of hypertension (rising from 11 to 27% among those aged 21–40 years to 58–66% among those aged 61–80 years). Both the weight status of participants (1.25-fold increased prevalence among those overweight) and where they lived [a 1.22-fold difference in prevalence from Eastern (lowest) compared with Southern (highest) Africa] appear to be important modulators of BP across the region.

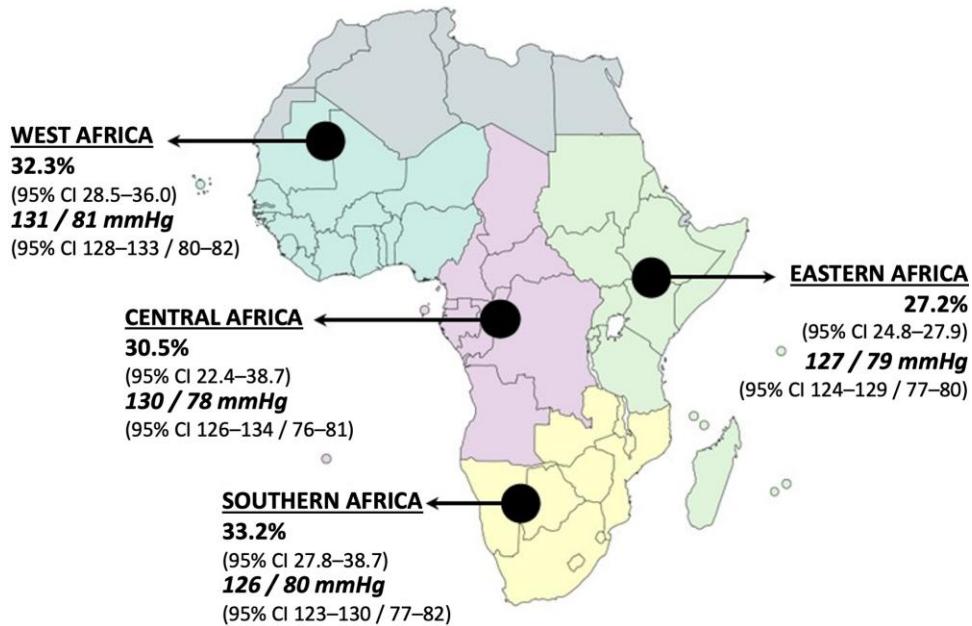
In considering our headline findings and the impact of age (and other key factors) on observed BP levels, it is important to note the extensive heterogeneity within all the studies (and parameters) included in our analyses. This was not unexpected given the diverse range of countries, population demographics, study settings (urban vs. rural), measurement methods, and definitions of hypertension captured within the source data. Such methodological and contextual diversity is an inherent feature of large-scale meta-analyses covering an entire region like SSA.^{6–8} Importantly, our findings more likely reflect real-world variations in BP levels across SSA rather than systemic methodological flaws in contributing studies. Unfortunately, despite a two to five-fold increase in the number of represented SSA countries and people living within them, our findings still do not capture the BP profiles of many low-income SSA countries. This lack of fully representative SSA data continues to limit the generalizability of ours and previous studies. As highlighted in an earlier report,¹⁰ while the WHO STEPS methodology¹⁸⁰ has contributed to greater methodological consistency, there remains a pressing need to standardize the specific data reported in hypertension-focused surveillance studies. In addition to supporting more research in under-represented African countries, such standardization is essential in maximizing efforts to combine data to better understand BP levels across SSA. This is something we are actively addressing via the Pan-African Cardiac Society.¹⁸¹


Despite potentially important differences in the timing, size and scope of included studies, our estimate that 31% of adults living in SSA are hypertensive, are concordant with that previously reported by Atakle and colleagues.¹⁸² Specifically, it falls within their confidence intervals around the prevalence of undiagnosed hypertensive adults (27–34%) as well as their ‘predicted’ hypertension increased from 16 to 44% among those aged 30–60 years living in 13 SSA countries; and entirely consistent with our previous report that around 10% of SSA adolescents approaching early adulthood are already hypertensive.¹⁰

Alternatively, our findings are discordant with more recent reports of markedly elevated levels of hypertension when compared with the rest of the world. For example, applying the same definition of hypertension, Zhou and colleagues reported that 48% (95% CI 42–54%) of women and 34% (95% CI 24–35%) of men in Africa have hypertension³; this sex-specific difference being particularly discordant with the BP levels reported in the studies we analysed. However, as acknowledged in their report, in addition to the inclusion of North African data among a limited number of studies overall, estimates were adjusted to the overall world population.³ Such discordance emphasizes the need to consider the markedly different population profile of SSA and the need to derive age-specific data on BP levels (as we have now done).

Noting an increasing confluence between hypertension and other endemic conditions such as HIV-AIDS,¹⁸³ with increasing urbanization (something we have not specifically addressed in this report) and the subsequent adoption of higher-risk lifestyles (leading to obesity)^{3,184–188} it seems inevitable that the disease burden of hypertension will steadily increase in this region, even if its underlying prevalence is not as high as commonly reported. As consistently shown by large,

Figure 3 Pooled prevalence of hypertension. *Figure 3* presents the main results of our meta-analyses on the pooled prevalence of hypertension.


Figure 4 Pooled blood pressure levels. Figure 4 summarizes the results of our meta-analysis of the prevalence of hypertension and meta-regression analyses of mean blood pressure levels according to age.

representative studies such as the Heart of Soweto Study (33% of cases),¹⁸⁷ the sub-Saharan Africa Survey of Heart Failure Study (45% of cases)¹⁸⁴ and INTERnational Congestive Heart Failure Study (35% of cases), hypertension remains a major cause of deadly and disabling heart failure among relatively young men and women.¹⁸⁵ A similar, but more profound scenario is evident in relation to hypertension and stroke. The Study of the Importance of Conventional and Emerging Risk Factors of Stroke in Different Regions and Ethnic Groups of the World found that globally (32 participating countries) a previous history of hypertension or BP of 140/90 mmHg or higher was the most important risk factor for a first stroke (three-fold increased risk).¹⁸⁹ Among the subset of SSA subjects, hypertension was the predominant attributable cause of stroke with a population attributable risk of 91%.¹⁹⁰ Critically, these findings are entirely consistent with those of the Stroke Investigative Research and Educational Network (SIREN) Study of people living in Ghana and Nigeria.¹⁸⁶ Overall, our study suggests that around one in three adults in SSA are at high-risk of prematurely developing these deadly and disabling conditions; often at an age when they are still able to work and be economically productive within their community. Most probably reflecting survival biases (i.e. the deadly impact of elevated BP over the life-course leading to less hypertensive survivors) we observed a ‘flattening’ of the otherwise monotonic association of BP levels at the most advanced ages accompanied by a narrowing in sex-specific differences observed in younger individuals. To reinforce the likely impact of premature cardiovascular events linked to unrecognized and uncontrolled hypertension, over the next 25 years, it is projected

that there will be 500 000 more cardiovascular events directly attributable to the adverse effects of elevated BP in early adulthood^{191,192} among the 16.1 million adolescents aged 15–19 years currently living in SSA who are already hypertensive.¹⁰

In considering the future consequence of hypertension in SSA, it is important to remember that high BP is easily measurable and often treatable in many parts of the world. However, even when detected, limited access to affordable anti-hypertensive medication is a major barrier across SSA.¹⁹³ Treatment and control rates remain very low, largely due to high out-of-pocket costs, inconsistent supply, and limited primary care coverage. From a treatment perspective, there is a need for more African-specific studies such as the pivotal pan-African CREOLE Trial that demonstrated calcium channel blocker-based combinations are more effective in reducing BP levels compared with an angiotensin converting enzyme inhibitor-thiazide diuretic combination in hypertensive African men and women.^{194,195} Thus, multiple gaps contribute to the high prevalence of uncontrolled hypertension and may partly explain regional differences observed in our analyses. Overall, the unique context of hypertension and consequent end-organ-damage in those living in SSA reinforces the need for locally relevant guidelines for the detection and management of hypertension in SSA¹⁸¹ based on an expanded range of evidence derived from high-quality surveillance to randomized trials.¹⁹⁶

Beyond the methodological issues around heterogeneity and generalizability of findings derived from a still limited number of SSA

Figure 5 Blood pressure levels across sub-Saharan Africa. *Figure 5* present the results of our meta-analysis of the prevalence of hypertension and meta-regression analyses of mean blood pressure levels according to UNSD region.

countries discussed above, a range of caveats needs to be considered when interpreting our findings. Firstly, as directly addressed via a series of sensitivity analyses, the issue of applying standardized BP surveillance methods and reporting remains problematic. Regional differences in BP may partly reflect selection bias, as many included studies were not nationally representative. Our estimates are based on single cross-sectional BP measurements. This approach may overstate the true prevalence of hypertension. Alternatively, estimates often reflect the proportion of individuals classified as hypertensive at the time of screening rather than the population-wide burden of sustained hypertension. By focussing on the published English literature and full study reports, we may have undoubtedly missed potentially important data from regions where English is not the predominant language. We also acknowledge that by selecting studies with a primary rather than secondary focus on BP levels, we have not collated all the available data possible for interpretation. Data on educational attainment, an important social determinant of hypertension, were inconsistently reported and insufficient for pooled analysis. Likewise, information on rural vs. urban residence was inconsistently reported, with most studies including mixed populations or lacking clear classification. Only few studies were exclusively rural or exclusively urban (<6% of all included studies). Consequently, these limitations prevented us from conducting robust sub-group analyses to fully capture potentially important differences in BP levels based on varying educational levels and location-specific factors across SSA.

In conclusion, our meta-analysis of contemporary observational data derived from more than 500 000 adults living in SSA suggests the overall prevalence of hypertension continues to be around 30%. However, given steep age-gradients evident in relation to being hypertensive (from one in ten to close to two in three younger to older individuals affected), paradoxically, any improvements in the life-expectancy of the SSA population is likely to increase its prevalence and subsequent

burden of disease. As reflected by observed regional differences, a large degree of heterogeneity in BP levels across studies and a paucity of data from many low-income countries, there is still much to learn about hypertension in SSA; particularly when considering the likely differential impact of rapid urbanization combined with broader socio-economic and behavioural factors across the region. Nevertheless, hypertension remains a highly preventable cause of premature cardiovascular events among some of the poorest people in the world. Study findings provide a timely reminder that much needs to be done to properly address the current and future burden of disease imposed by hypertension in SSA.

Supplementary material

Supplementary material is available at [European Journal of Preventive Cardiology](https://academic.oup.com/eurjpc/advance-article/doi/10.1093/eurjpc/zwaf706/8322585).

Author contributions

Alexander Chen (Conceptualization [equal]; Formal analysis [lead]; Investigation [lead]; Methodology [equal]; Writing—original draft [supporting]; Writing—review & editing [supporting]), Yih-Kai Chan (Formal analysis [supporting]; Investigation [supporting]; Methodology [supporting]; Writing—original draft [supporting]; Writing—review & editing [supporting]), Ana O Mocumbi (Conceptualization [supporting]; Formal analysis [supporting]; Writing—review & editing [supporting]), Justin Beilby (Supervision [supporting]; Writing—review & editing [supporting]), Dike B Ojji (Validation [supporting]; Writing—review & editing [supporting]), Karen Sliwa (Validation [supporting]; Writing—review & editing [supporting]), Albertino Damasceno (Validation [supporting]; Writing—review & editing [supporting]), and Simon Stewart (PhD DMSc (Conceptualization [equal]; Formal analysis [supporting]; Investigation [supporting]; Supervision

[lead]; Validation [supporting]; Writing—original draft [lead]; Writing—review & editing [lead]))

Funding

S.S. was supported by the National Health and Medical Research Council of Australia (GNT1135894).

Conflict of interest: The authors have no conflicts of interest to declare.

Data availability

All data used in this study were obtained from previously published articles that are publicly accessible through databases such as PubMed, Google Scholar, African Index Medicus, and Embase. The extracted datasets underlying the analyses, along with analytic code and outputs, are available from the corresponding author upon reasonable request.

References

1. World Health Organisation. *Global Report on Hypertension: the Race Against a Silent Killer*. Geneva, Switzerland: World Health Organization; 2023.
2. Kirschbaum TK, Sudharsanan N, Manne-Goehler J, De Neve JW, Lemp JM, Theilmann M, et al. The association of socioeconomic Status with hypertension in 76 low- and middle-income countries. *J Am Coll Cardiol* 2022;80:804–817.
3. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. *Lancet* 2021;398:957–980.
4. Keates AK, Mocumbi AO, Ntsekhe M, Sliwa K, Stewart S. Cardiovascular disease in Africa: epidemiological profile and challenges. *Nat Rev Cardiol* 2017;14:273–293.
5. Yuyun MF, Sliwa K, Kengne AP, Mocumbi AO, Buhkman G. Cardiovascular diseases in Sub-Saharan Africa compared to high-income countries: an epidemiological perspective. *Glob Heart* 2020;15:15.
6. Lu WL, Yuan JH, Liu ZY, Su ZH, Shen YC, Li SJ, et al. Worldwide trends in mortality for hypertensive heart disease from 1990 to 2019 with projection to 2034: data from the Global Burden of Disease 2019 study. *Eur J Prev Cardiol* 2024;31:23–37.
7. Akpa OM, Made F, Ojo A, Ovbiagele B, Adu D, Motala AA, et al. Regional patterns and association between obesity and hypertension in Africa: evidence from the H3Africa CHAIR study. *Hypertension* 2020;75:1167–1178.
8. Hoy D, Brooks P, Woolf A, Blyth F, March L, Bain C, et al. Assessing risk of bias in prevalence studies: modification of an existing tool and evidence of interrater agreement. *J Clin Epidemiol* 2012;65:934–939.
9. Zhizhilashvili S, McHedlishvili I, Camacho R, Jankarashvili N, Garuchava N, Mebonia N. Descriptive epidemiology of gastric cancer: a population-based study from Georgia. *Cureus* 2024;16:e66862.
10. Chen A, Waite L, Mocumbi AO, Chan YK, Beilby J, Ojji DB, et al. Elevated blood pressure among adolescents in sub-Saharan Africa: a systematic review and meta-analysis. *Arch Glob Health* 2023;11:e1238–e1248.
11. Tumwesige NM, Mutungi G, Bahendeka S, Wesonga R, Katureebe A, Biribawa C, et al. Alcohol consumption, hypertension and obesity: relationship patterns along different age groups in Uganda. *Prev Med Rep* 2020;19:101141.
12. Cois A, Ehrlich R. Analysing the socioeconomic determinants of hypertension in South Africa: a structural equation modelling approach. *BMC Public Health* 2014;14:414.
13. Brackmann LK, Buck C, Nyangasa MA, Kelm S, Sheikh M, Hebestreit A. Anthropometric and biochemical predictors for hypertension in a cross-sectional study in Zanzibar, Tanzania. *Front Public Health* 2019;7:338.
14. Schutte AE, Schutte R, Huisman HW, van Rooyen JM, Fourie CM, Malan NT, et al. Are behavioural risk factors to be blamed for the conversion from optimal blood pressure to hypertensive status in Black South Africans? A 5-year prospective study. *Int J Epidemiol* 2012;41:1114–1123.
15. Jenson A, Omar AL, Omar MA, Rishad AS, Khoshnood K. Assessment of hypertension control in a district of mombasa, Kenya. *Glob Public Health* 2011;6:293–306.
16. Geta TG, Woldeamanuel GG, Hailemariam BZ, Bedada DT. Association of chronic khat chewing with blood pressure and predictors of hypertension among adults in Gurage Zone, Southern Ethiopia: a comparative study. *Integr Blood Press Control* 2019;12:33–42.
17. Nkeh-Chungang BN, Mkhosa TH, Mguduka PN. Association of waist and hip circumferences with the presence of hypertension and pre-hypertension in young South African adults. *Afr Health Sci* 2015;15:908–916.
18. Raji YR, Abiona T, Gureje O. Awareness of hypertension and its impact on blood pressure control among elderly Nigerians: report from the ibadan study of aging. *Pan Afr Med J* 2017;27:190.
19. Gebrihet TA, Mesgna KH, Gebregiorgis YS, Kahsay AB, Weldehaweria NB, Weldu MG. Awareness, treatment, and control of hypertension is low among adults in Aksum town, northern Ethiopia: a sequential quantitative-qualitative study. *PLoS One* 2017;12:e0176904.
20. Doulougou B, Kouanda S, Ouedraogo GH, Meda BI, Bado A, Zunzunegui MV. Awareness, treatment, control of hypertension and utilization of health care services following screening in the North-central region of Burkina Faso. *Pan Afr Med J* 2014;19:259.
21. Williams EA, Keenan KE, Ansong D, Simpson LM, Boakye I, Boaheng JM, et al. The burden and correlates of hypertension in rural Ghana: a cross-sectional study. *Diabetes Metab Syndr* 2013;7:123–128.
22. Isara AR, Okundia PO. The burden of hypertension and diabetes mellitus in rural communities in southern Nigeria. *Pan Afr Med J* 2015;20:103.
23. Msyamboza KP, Kathiyola D, Dzowela T, Bowie C. The burden of hypertension and its risk factors in Malawi: nationwide population-based STEPS survey. *Int Health* 2012;4:246–252.
24. Guwatudde D, Nankya-Mutyoba J, Kalyesubala R, Laurence C, Adebamowo C, Ajayi I, et al. The burden of hypertension in sub-Saharan Africa: a four-country cross sectional study. *BMC Public Health* 2015;15:1211.
25. Cham B, Scholes S, Ng Fat L, Badjie O, Mindell JS. Burden of hypertension in The Gambia: evidence from a national world health organization (WHO) STEP survey. *Int J Epidemiol* 2018;47:860–871.
26. Mogas SB, Tesfaye T, Zewde B, Tesfaye Y, Kebede A, Tadesse M, et al. Burden of undiagnosed hypertension among adults in urban communities of Southwest Ethiopia. *Integr Blood Press Control* 2021;14:69–76.
27. Damasceno A, Padrao P, Silva-Matos C, Prista A, Azevedo A, Lunet N. Cardiovascular risk in Mozambique: who should be treated for hypertension? *J Hypertens* 2013;31:2348–2355.
28. Murray M, King C, Sorensen C, Bunick E, King R. Community awareness of stroke, hypertension and modifiable risk factors for cardiovascular disease in Nkonya-Wurupong, Ghana. *J Public Health Afr* 2018;9:783.
29. Pancha Mbouemboe O, Derew D, Tsougmo JO, Tangi Tamanji M. A community-based assessment of hypertension and some other cardiovascular disease risk factors in Ngaoundere, Cameroon. *Int J Hypertens* 2016;2016:4754636.
30. Ulasi II, Ijoma CK, Onodugo OD. A community-based study of hypertension and cardio-metabolic syndrome in semi-urban and rural communities in Nigeria. *BMC Health Serv Res* 2010;10:71.
31. Katalambula LK, Meyer DN, Ngoma T, Buza J, Mpolya E, Mtumwa AH, et al. Dietary pattern and other lifestyle factors as potential contributors to hypertension prevalence in Arusha City, Tanzania: a population-based descriptive study. *BMC Public Health* 2017;17:659.
32. Doulougou B, Kouanda S, Rossier C, Soura A, Zunzunegui MV. Differences in hypertension between informal and formal areas of Ouagadougou, a sub-Saharan African city. *BMC Public Health* 2014;14:893.
33. Pisa PT, Micklesfield LK, Kagura J, Ramsay M, Crowther NJ, Norris SA. Different adiposity indices and their association with blood pressure and hypertension in middle-aged urban black South African men and women: findings from the AWI-GEN South African Soweto Site. *BMC Public Health* 2018;18:524.
34. Mulenga D, Sizya S, Rudatsikira E, Mukonka VM, Babaniyi O, Songolo P, et al. District specific correlates for hypertension in Kaoma and Kasama rural districts of Zambia. *Rural Remote Health* 2013;13:2345.
35. Oyekale AS. Effect of obesity and other risk factors on hypertension among women of reproductive age in Ghana: an instrumental Variable probit model. *Int J Environ Res Public Health* 2019;16:4699.
36. Ezeekwesili CN, Ononamadu CJ, Onyeukwu OF, Mefoh NC. Epidemiological survey of hypertension in Anambra state, Nigeria. *Niger J Clin Pract* 2016;19:659–667.
37. Olamoyegun MA, Oluyombo R, Iwuala SO, Asaolu SO. Epidemiology and patterns of hypertension in semi-urban communities, south-western Nigeria. *Cardiovasc Afr* 2016;27:356–360.
38. Maher D, Waswa L, Baisley K, Karabarinde A, Unwin N. Epidemiology of hypertension in low-income countries: a cross-sectional population-based survey in rural Uganda. *J Hypertens* 2011;29:1061–1068.
39. Galson SW, Staton CA, Karia F, Kilonzo K, Lunyera J, Patel UD, et al. Epidemiology of hypertension in Northern Tanzania: a community-based mixed-methods study. *BMJ Open* 2017;7:e018829.
40. Mosisa G, Regassa B, Biru B. Epidemiology of hypertension in selected towns of Wollega zones, Western Ethiopia, 2019: a community-based cross-sectional study. *SAGE Open Med* 2021;9:205031211024519.

41. Gebreslassie KZ, Padyab M. Epidemiology of hypertension stages in two countries in Sub-Saharan Africa: factors associated with hypertension stages. *Int J Hypertens* 2015; **2015**:959256.

42. Kotwani P, Balzer L, Kwarisima D, Clark TD, Kabami J, Byonanebye D, et al. Evaluating linkage to care for hypertension after community-based screening in rural Uganda. *Trop Med Int Health* 2014; **19**:459–468.

43. Geraedts TJM, Boateng D, Lindenbergh KC, van Delft D, Mathéron HM, Mönnink GLE, et al. Evaluating the cascade of care for hypertension in Sierra Leone. *Trop Med Int Health* 2021; **26**:1470–1480.

44. Akpa OM, Okeunle AP, Ovbiagele B, Sarfo FS, Akinyemi RO, Akpalu A, et al. Factors associated with hypertension among stroke-free indigenous Africans: findings from the SIREN study. *J Clin Hypertens (Greenwich)* 2021; **23**:773–784.

45. Choukem SP, Kengne AP, Nguefack ML, Mboue-Djeika Y, Nebongo D, Guimezap JT, et al. Four-year trends in adiposity and its association with hypertension in serial groups of young adult university students in urban Cameroon: a time-series study. *BMC Public Health* 2017; **17**:499.

46. Lunyera J, Kirenga B, Stanifer JW, Kasozi S, van der Molen T, Katagira WV, et al. Geographic differences in the prevalence of hypertension in Uganda: results of a national epidemiological study. *PLoS One* 2018; **13**:e0201001.

47. Kandala NB, Tigbe W, Manda SO, Stranges S. Geographic variation of hypertension in sub-Saharan Africa: a case study of South Africa. *Am J Hypertens* 2013; **26**:382–391.

48. Raphael DM, Roos L, Myovela V, Mchomvu E, Namamba J, Kilindimo S, et al. Heart diseases and echocardiography in rural Tanzania: occurrence, characteristics, and etiologies of underappreciated cardiac pathologies. *PLoS One* 2018; **13**:e0208931.

49. Demisse AG, Greffie ES, Abebe SM, Bulti AB, Alemu S, Abebe B, et al. High burden of hypertension across the age groups among residents of Gondar city in Ethiopia: a population based cross sectional study. *BMC Public Health* 2017; **17**:647.

50. Peer N, Steyn K, Lombard C, Gwebushe N, Levitt N. A high burden of hypertension in the urban black population of Cape Town: the cardiovascular risk in Black South Africans (CRIBSA) study. *PLoS One* 2013; **8**:e78567.

51. Ulasi II, Ijoma CK, Onwubere BJ, Arodiwe E, Onodugo O, Okafor C. High prevalence and low awareness of hypertension in a market population in Enugu, Nigeria. *Int J Hypertens* 2011; **2011**:869675.

52. Noor SK, Elsugud NA, Bushara SO, Elmadhoun WM, Ahmed MH. High prevalence of hypertension among an ethnic group in Sudan: implications for prevention. *Ren Fail* 2016; **38**:352–356.

53. Kavish B, Biraro S, Baisley K, Vanobberghen F, Kapiga S, Munderi P, et al. High prevalence of hypertension and of risk factors for non-communicable diseases (NCDs): a population based cross-sectional survey of NCDS and HIV infection in Northwestern Tanzania and Southern Uganda. *BMC Med* 2015; **13**:126.

54. Manus MB, Bloomfield GS, Leonard AS, Guidera LN, Samson DR, Nunn CL. High prevalence of hypertension in an agricultural village in Madagascar. *PLoS One* 2018; **13**:e0201616.

55. Banigbe BF, Itanyi IU, Ofili EO, Ogidi AG, Patel D, Ezeanolue EE. High prevalence of undiagnosed hypertension among men in North Central Nigeria: results from the healthy beginning initiative. *PLoS One* 2020; **15**:e0242870.

56. Camara A, Baldé NM, Diakité M, Sylla D, Baldé EH, Kengne AP, et al. High prevalence, low awareness, treatment and control rates of hypertension in Guinea: results from a population-based STEPS survey. *J Hum Hypertens* 2016; **30**:237–244.

57. Balla SA, Abdalla AA, Elmukashfi TA, Ahmed HA. Hypertension among rural population in four states: Sudan 2012. *Glob J Health Sci* 2014; **6**:206–212.

58. Peltzer K, Phaswana-Mafuya N. Hypertension and associated factors in older adults in South Africa. *Cardiovasc J Afr* 2013; **24**:67–71.

59. Bâ HO, Camara Y, Menta I, Sangaré I, Sidibé N, Diall IB, et al. Hypertension and associated factors in rural and urban areas Mali: data from the STEP 2013 survey. *Int J Hypertens* 2018; **2018**:6959165.

60. Asfaw LS, Ayanto SY, Gurammo FL. Hypertension and its associated factors in Hosanna town, Southern Ethiopia: community based cross-sectional study. *BMC Res Notes* 2018; **11**:306.

61. Macia E, Gueye L, Duboz P. Hypertension and obesity in Dakar, Senegal. *PLoS One* 2016; **11**:e0161544.

62. Sanuade OA, Awuah RB, Kushitor M. Hypertension awareness, treatment and control in Ghana: a cross-sectional study. *Ethn Health* 2020; **25**:702–716.

63. Putnam HWI, Jones R, Rogathi J, Gray WK, Swai B, Dewhurst M, et al. Hypertension in a resource-limited setting: is it associated with end organ damage in older adults in rural Tanzania? *J Clin Hypertens (Greenwich)* 2018; **20**:217–224.

64. Ekpe EL, Eleme IA. Hypertension in a Rural Community in South-South Nigeria. *J Coll Physicians Surg Pak* 2016; **26**:868–869.

65. Pires JE, Sebastiao YV, Langa AJ, Nery SV. Hypertension in Northern Angola: prevalence, associated factors, awareness, treatment and control. *BMC Public Health* 2013; **13**:90.

66. Ofili MI, Ncama BP, Sartorius B. Hypertension in rural communities in Delta State, Nigeria: prevalence, risk factors and barriers to health care. *Afr J Prim Health Care Fam Med* 2015; **7**:875.

67. Hasumi T, Jacobsen KH. Hypertension in South African adults: results of a nationwide survey. *J Hypertens* 2012; **30**:2098–2104.

68. Hendriks ME, Wit FW, Roos MT, Brewster LM, Akande TM, de Beer IH, et al. Hypertension in sub-Saharan Africa: cross-sectional surveys in four rural and urban communities. *PLoS One* 2012; **7**:e32638.

69. Duboz P, Boetsch G, Gueye L, Macia E. Hypertension in the Ferlo (Northern Senegal): prevalence, awareness, treatment and control. *Pan Afr Med J* 2016; **25**:177.

70. Mphekgwana PM, Malema N, Monyeki KD, Mothiba TM, Makgahlela M, Kgatla N, et al. Hypertension prevalence and determinants among black South African adults in semi-urban and rural areas. *Int J Environ Res Public Health* 2020; **17**:7463.

71. Simo LP, Agbor VN, Noubiap JJN, Nana OP, Nkosu PS, Anouboweh AFA, et al. Hypertension prevalence, associated factors, treatment and control in rural Cameroon: a cross-sectional study. *BMJ Open* 2020; **10**:e040981.

72. Sanuade OA, Boatema S, Kushitor MK. Hypertension prevalence, awareness, treatment and control in Ghanaian population: evidence from the Ghana demographic and health survey. *PLoS One* 2018; **13**:e0205985.

73. Okello S, Muhihi A, Mohamed SF, Amech S, Ochimana C, Oluwasanu AO, et al. Hypertension prevalence, awareness, treatment, and control and predicted 10-year CVD risk: a cross-sectional study of seven communities in East and West Africa (SevenCEWA). *BMC Public Health* 2020; **20**:1706.

74. Arrey WT, Dimala CA, Atashili J, Mbuaagbaw J, Monekosso GL. Hypertension, an emerging problem in rural Cameroon: prevalence, risk factors, and control. *Int J Hypertens* 2016; **2016**:5639146.

75. Pastakia SD, Manyara SM, Vedanthan R, Kamano JH, Menya D, Andama B, et al. Impact of Bridging Income Generation with Group Integrated Care (BIGPIC) on hypertension and diabetes in rural Western Kenya. *J Gen Intern Med* 2017; **32**:540–548.

76. Abariga SA, Al Kibria GM, Albrecht JS. Impact of the 2017 American College of Cardiology/American Heart Association guidelines on prevalence of hypertension in Ghana. *Am J Trop Med Hyg* 2020; **102**:1425–1431.

77. Drain PK, Hong T, Hajat A, Krows M, Govore S, Thulare H, et al. Integrating hypertension screening at the time of voluntary HIV testing among adults in South Africa. *PLoS One* 2019; **14**:e0210161.

78. Maduka O, Tobin-West C. Is living in a gas-flaring host community associated with being hypertensive? Evidence from the Niger Delta region of Nigeria. *BMJ Glob Health* 2017; **2**:e000413.

79. Zec MM, Schutte AE, Ricci C, Baumgartner J, Kruger IM, Smuts CM. Long-chain polyunsaturated fatty acids are associated with blood pressure and hypertension over 10-years in black South African adults undergoing nutritional transition. *Foods* 2019; **8**:394.

80. Nelissen HE, Okwor TJ, Khalidson O, Osibogun A, Van't Hoog AH. Low uptake of hypertension care after community hypertension screening events in Lagos, Nigeria. *Glob Health Action* 2018; **11**:1548006.

81. Zekebos A, Egeno T, Loha E. The magnitude of hypertension and its risk factors in southern Ethiopia: a community based study. *PLoS One* 2019; **14**:e0221726.

82. Kandala NB, Nnanatu CC, Dukhi N, Sewpaul R, Davids A, Reddy SP. Mapping the burden of hypertension in South Africa: a comparative analysis of the national 2012 SANHANES and the 2016 demographic and health survey. *Int J Environ Res Public Health* 2021; **18**:5445.

83. Ogah OS, Arije A, Xin X, Beaney T, Adebiyi A, Sani MU, et al. May measurement month 2017: screening for hypertension in Nigeria-Sub-Saharan Africa. *Eur Heart J Suppl* 2019; **21**:D86–DD8.

84. Duboz P, Macia E, Chapuis-Lucciani N, Boetsch G, Gueye L. Migration and hypertension in Dakar, Senegal. *Am J Phys Anthropol* 2012; **149**:250–258.

85. Mayegga RW, Makumbi F, Rutebemberwa E, Peterson S, Östenson CG, Tomson G, et al. Modifiable socio-behavioural factors associated with overweight and hypertension among persons aged 35 to 60 years in eastern Uganda. *PLoS One* 2012; **7**:e47632.

86. Mengistu MD. Pattern of blood pressure distribution and prevalence of hypertension and prehypertension among adults in Northern Ethiopia: disclosing the hidden burden. *BMC Cardiovasc Disord* 2014; **14**:33.

87. Keetile M, Navaneetham K, Letamo G. Patterns and determinants of hypertension in Botswana. *Z Gesundh Wiss* 2015; **23**:311–318.

88. Geleta GT, Cheme MC, Roro EM. Physical, behavioral and sociodemographic determinants of hypertension among the adult population in Nekemte town, western Ethiopia: community based study. *BMC Res Notes* 2019; **12**:764.

89. Nahimana MR, Nyandwi A, Muimpundu MA, Olu O, Condo JU, Rusanganwa A, et al. A population-based national estimate of the prevalence and risk factors associated with hypertension in Rwanda: implications for prevention and control. *BMC Public Health* 2017; **18**:2.

90. Osunkwo D, Mohammed A, Kamateeka M, Nguku P, Umeokonwo CD, Abolade OS, et al. Population-based prevalence and associated risk factors of hypertension among adults in Benue State, Nigeria. *Niger J Clin Pract* 2020;23:944–949.

91. Nuwaha F, Musinguzi G. Pre-hypertension in Uganda: a cross-sectional study. *BMC Cardiovasc Disord* 2013;13:101.

92. Acheampong K, Nyamari JM, Ganu D, Appiah S, Pan X, Kaminga A, et al. Predictors of hypertension among adult female population in Kpone-Katamanso District, Ghana. *Int J Hypertens* 2019;2019:1876060.

93. Ware LJ, Chidumwa G, Charlton K, Schutte AE, Kowal P. Predictors of hypertension awareness, treatment and control in South Africa: results from the WHO-SAGE population survey (Wave 2). *J Hum Hypertens* 2019;33:157–166.

94. Hassen B, Mamo H. Prevalence and associated anthropometric and lifestyle predictors of hypertension among adults in Kombolcha town and suburbs, Northeast Ethiopia: a community-based cross-sectional study. *BMC Cardiovasc Disord* 2019;19:241.

95. Helelo TP, Gelaw YA, Adane AA. Prevalence and associated factors of hypertension among adults in Durame Town, Southern Ethiopia. *PLoS One* 2014;9:e112790.

96. Asresahgn H, Tadesse F, Beyene E. Prevalence and associated factors of hypertension among adults in Ethiopia: a community based cross-sectional study. *BMC Res Notes* 2017;10:629.

97. Omar SM, Musa IR, Osman OE, Adam I. Prevalence and associated factors of hypertension among adults in Gadarif in Eastern Sudan: a community-based study. *BMC Public Health* 2020;20:291.

98. Awoke A, Awoke T, Alemu S, Megabiaw B. Prevalence and associated factors of hypertension among adults in gondar, northwest Ethiopia: a community based cross-sectional study. *BMC Cardiovasc Disord* 2012;12:113.

99. Kebede B, Ayele G, Haftu D, Gebremichael G. The prevalence and associated factors of hypertension among adults in Southern Ethiopia. *Int J Chronic Dis* 2020;2020:8020129.

100. Abebe SM, Berhane Y, Worku A, Getachew A. Prevalence and associated factors of hypertension: a cross-sectional community based study in northwest Ethiopia. *PLoS One* 2015;10:e0125210.

101. Ntuli ST, Maimela E, Alberts M, Choma S, Dikotope S. Prevalence and associated risk factors of hypertension amongst adults in a rural community of Limpopo province, South Africa. *Afr J Prim Health Care Fam Med* 2015;7:847.

102. Egbi OG, Ahmed SD, Madubuko R. Prevalence and biosocial determinants of hypertension in a rural population in Edo State, Southern Nigeria. *Afr J Prim Health Care Fam Med* 2021;13:e1–e7.

103. Suleiman IA, Amogu EO, Ganiyu KA. Prevalence and control of hypertension in a Niger Delta semi urban community, Nigeria. *Pharm Pract (Granada)* 2013;11:24–29.

104. Andy JJ, Peters Ej, Ekrikpo UE, Akpan NA, Unadike BC, Ekott JU. Prevalence and correlates of hypertension among the Ibibio/Annangs, Efiks and Obolos: a cross sectional community survey in rural South-South Nigeria. *Ethn Dis* 2012;22:335–339.

105. Bello-Ovosi BO, Asuke S, Abdulrahman SO, Ibrahim MS, Ovosi JO, Ogunsina MA, et al. Prevalence and correlates of hypertension and diabetes mellitus in an urban community in North-Western Nigeria. *Pan Afr Med J* 2018;29:97.

106. Shittu RO, Odeigah LO, Fakorede KO, Sikiru BA, Sule AG, Musah Y, et al. Prevalence and correlates of hypertension-outcome of a free medical screening in Oke-Ogun area of Oyo state, Nigeria. *West Africa: J Am Soc Hypertens* 2018;12:268–274.

107. de Ramirez SS, Enquobahrie DA, Nyadzi G, Mjungu D, Magombo F, Ramirez M, et al. Prevalence and correlates of hypertension: a cross-sectional study among rural populations in sub-Saharan Africa. *J Hum Hypertens* 2010;24:786–795.

108. Umuere EM, Aiywuya HO. Prevalence and correlates of prehypertension and hypertension among adults in Delta State, Nigeria: a cross-sectional community-based study. *Ghana Med J* 2020;54:48–57.

109. Anteneh ZA, Yalew WA, Abitew DB. Prevalence and correlation of hypertension among adult population in Bahir Dar city, northwest Ethiopia: a community based cross-sectional study. *Int J Gen Med* 2015;8:175–185.

110. Khamis AG, Senkoror M, Mwanri AW, Kreppel K, Mfinanga SG, Bonfoh B, et al. Prevalence and determinants of hypertension among pastoralists in Monduli District, Arusha region in Tanzania: a cross-sectional study. *Arch Public Health* 2020;78:99.

111. Pessinaba S, Mbaye A, Yabeta GA, Kane A, Ndaio CT, Ndiaye MB, et al. Prevalence and determinants of hypertension and associated cardiovascular risk factors: data from a population-based, cross-sectional survey in Saint Louis, Senegal. *Cardiovasc J Afr* 2013;24:180–183.

112. Tapela NM, Clifton L, Tshisimogo G, Gaborone M, Madidimalo T, Letsatsi V, et al. Prevalence and determinants of hypertension awareness, treatment, and control in Botswana: a nationally representative population-based survey. *Int J Hypertens* 2020;2020:8082341.

113. Ugwuja E, Ezenwua U, Nwibo A, Ogbanshi M, Idoko O, Nnabu R. Prevalence and determinants of hypertension in an agrarian rural community in southeast Nigeria. *Ann Med Health Sci Res* 2015;5:45–49.

114. Opreh OP, Olajubu TO, Akarakiri KJ, Ligenza V, Amos JT, Adeyeye AV, et al. Prevalence and factors associated with hypertension among rural community dwellers in a local government area, South West Nigeria. *Afr Health Sci* 2021;21:75–81.

115. Soubeiga JK, Millogo T, Bicaba BV, Doulougou B, Kouanda S. Prevalence and factors associated with hypertension in Burkina Faso: a countrywide cross-sectional study. *BMC Public Health* 2017;17:64.

116. Agyei-Baffour P, Tetteh G, Quansah DY, Boateng D. Prevalence and knowledge of hypertension among people living in rural communities in Ghana: a mixed method study. *Afr Health Sci* 2018;18:931–941.

117. Craig LS, Gage AJ, Thomas AM. Prevalence and predictors of hypertension in Namibia: a national-level cross-sectional study. *PLoS One* 2018;13:e0204344.

118. Princewil F, Cumber SN, Kimbi JA, Nkpusi CN, Keka El, Viyoff VZ, et al. Prevalence and risk factors associated with hypertension among adults in a rural setting: the case of Ombe, Cameroon. *Pan Afr Med J* 2019;34:147.

119. Murthy GV, Fox S, Sivasubramaniam S, Gilbert CE, Mahdi AM, Imam AU, et al. Prevalence and risk factors for hypertension and association with ethnicity in Nigeria: results from a national survey. *Cardiovasc J Afr* 2013;24:344–350.

120. Asemu MM, Yalew AW, Kabeta ND, Mekonnen D. Prevalence and risk factors of hypertension among adults: a community based study in Addis Ababa, Ethiopia. *PLoS One* 2021;16:e0248934.

121. Kingue S, Ngoe CN, Menanga AP, Jinki AM, Noubiap JJ, Fesuh B, et al. Prevalence and risk factors of hypertension in urban areas of Cameroon: a nationwide population-based cross-sectional study. *J Clin Hypertens (Greenwich)* 2015;17:819–824.

122. Bushara SO, Noor SK, Ibraheem AA, Elmadhoun VM, Ahmed MH. Prevalence of and risk factors for hypertension among urban communities of north Sudan: detecting a silent killer. *J Family Med Prim Care* 2016;5:605–610.

123. Anderson AK. Prevalence of Anemia, overweight/obesity, and undiagnosed hypertension and diabetes among residents of selected communities in Ghana. *Int J Chronic Dis* 2017;2017:7836019.

124. Plotb DW, Mbwambo JK, Fonner VA, Horowitz B, Zager P, Schrader R, et al. Prevalence of CKD, diabetes, and hypertension in rural Tanzania. *Kidney Int Rep* 2018;3:905–915.

125. Daniel OJ, Adejumo OA, Adejumo EN, Owolabi RS, Braimoh RW. Prevalence of hypertension among urban slum dwellers in Lagos, Nigeria. *J Urban Health* 2013;90:1016–1025.

126. Joshi MD, Ayah R, Njau EK, Wanjiru R, Kayima JK, Njeru EK, et al. Prevalence of hypertension and associated cardiovascular risk factors in an urban slum in Nairobi, Kenya: a population-based survey. *BMC Public Health* 2014;14:1177.

127. Chuka A, Gutema BT, Ayele G, Megersa ND, Melketsedik ZA, Zewdie TH. Prevalence of hypertension and associated factors among adult residents in arba minch health and demographic surveillance site, Southern Ethiopia. *PLoS One* 2020;15:e0237333.

128. Geset Haile D, Sharew NT, Mekuria AD, Abebe AM, Mezemir Y. Prevalence of hypertension and associated factors among adults in Debre Berhan Town, North Shoa Zone, Ethiopia, 2020. *Vasc Health Risk Manag* 2021;17:203–210.

129. Bonsu F, Gudina EK, Hajito KW. Prevalence of hypertension and associated factors in Bedelle Town, Southwest Ethiopia. *Ethiop J Health Sci* 2014;24:21–26.

130. Roba HS, Beyene AS, Mengesha MM, Ayele BH. Prevalence of hypertension and associated factors in Dire Dawa City, Eastern Ethiopia: a community-based cross-sectional study. *Int J Hypertens* 2019;2019:9878437.

131. Musung JM, Kakoma PK, Kaut Mukeng C, Tshimanga SL, Munkemena Banze JP, Kaj NK, et al. Prevalence of hypertension and associated factors in Lubumbashi City, Democratic Republic of Congo: a community-based cross-sectional study. *Int J Hypertens* 2021;2021:6674336.

132. Houinato DS, Gbary AR, Houehanou YC, Djirlo F, Amoussou M, Segnon-Agueh J, et al. Prevalence of hypertension and associated risk factors in Benin. *Rev Epidemiol Sante Publique* 2012;60:95–102.

133. Okubadejo NU, Ozoh OB, Ojo OO, Akinkugbe AO, Odeniyi IA, Adegoke O, et al. Prevalence of hypertension and blood pressure profile amongst urban-dwelling adults in Nigeria: a comparative analysis based on recent guideline recommendations. *Clin Hypertens* 2019;25:7.

134. Anjulo U, Haile D, Wolde A. Prevalence of hypertension and its associated factors among adults in Areka Town, Wolaita Zone, Southern Ethiopia. *Integr Blood Press Control* 2021;14:43–54.

135. Kiber M, Wube M, Temesgen H, Woyraw W, Belay YA. Prevalence of hypertension and its associated factors among adults in Debre Markos Town, Northwest Ethiopia: community based cross-sectional study. *BMC Res Notes* 2019;12:406.

136. Yadache B, Tekle F, Fetensa G, Habte A, Zeleke B. Prevalence of hypertension and its associated factors among Gimbi Town Residents, Ethiopia: a community-based cross-sectional study. *Integr Blood Press Control* 2020;13:171–179.

137. Goma FM, Nzala SH, Babaniyi O, Songolo P, Zyaambo C, Rudatsikira E, et al. Prevalence of hypertension and its correlates in Lusaka urban district of Zambia: a population based survey. *Int Arch Med* 2011;4:34.

138. Matsuzaki M, Sherr K, Augusto O, Kawakatsu Y, Ásbjörnsdóttir K, Chale F, et al. The prevalence of hypertension and its distribution by sociodemographic factors in Central Mozambique: a cross sectional study. *BMC Public Health* 2020; **20**:1843.

139. Akpan EE, Ekrisko UE, Udo AI, Bassey BE. Prevalence of hypertension in Akwa Ibom State, South-South Nigeria: rural versus urban communities study. *Int J Hypertens* 2015; **2015**:975819.

140. Onwuchekwa AC, Mezie-Okoye MM, Babatunde S. Prevalence of hypertension in Kegbara-Dere, a rural community in the Niger Delta region, Nigeria. *Ethn Dis* 2012; **22**:340–346.

141. Awad M, Ruzza A, Mirocha J, Setareh-Shenas S, Pixton JR, Soliman C, et al. Prevalence of hypertension in the Gambia and Sierra Leone, western Africa: a cross-sectional study. *Cardiovasc J Afr* 2014; **25**:269–278.

142. Dosoo DK, Nyame S, Enuameh Y, Ayetey H, Danwonno H, Twumasi M, et al. Prevalence of hypertension in the Middle Belt of Ghana: a community-based screening study. *Int J Hypertens* 2019; **2019**:1089578.

143. Asekun-Olarinmoye E, Akinwusi P, Adebimpe W, Isawumi M, Hassan M, Olowe O, et al. Prevalence of hypertension in the rural adult population of Osun State, southwestern Nigeria. *Int J Gen Med* 2013; **6**:317–322.

144. Adebayo RA, Balogun MO, Adedoyin RA, Obashoro-John OA, Bisiriyu LA, Abiodun OO. Prevalence of hypertension in three rural communities of Ife north local government area of Osun State, South West Nigeria. *Int J Gen Med* 2013; **6**:863–868.

145. Price AJ, Crampin AC, Amberbir A, Kayuni-Chihana N, Musicha C, Tafatatha T, et al. Prevalence of obesity, hypertension, and diabetes, and cascade of care in sub-Saharan Africa: a cross-sectional, population-based study in rural and urban Malawi. *Lancet Diabetes Endocrinol* 2018; **6**:208–222.

146. Shukuri A, Tewelde T, Shaweno T. Prevalence of old age hypertension and associated factors among older adults in rural Ethiopia. *Integr Blood Press Control* 2019; **12**:23–31.

147. Isezuo SA, Sabir AA, Ohwovoriloke AE, Fasanmade OA. Prevalence, associated factors and relationship between prehypertension and hypertension: a study of two ethnic African populations in Northern Nigeria. *J Hum Hypertens* 2011; **25**:224–230.

148. Desormais I, Amidou SA, Houehanou YC, Houinato SD, Gbagoudi GN, Preux PM, et al. The prevalence, awareness, management and control of hypertension in men and women in Benin, West Africa: the TAHES study. *BMC Cardiovasc Disord* 2019; **19**:303.

149. Macia E, Duboz P, Gueye L. Prevalence, awareness, treatment and control of hypertension among adults 50 years and older in Dakar, Senegal. *Cardiovasc J Afr* 2012; **23**:265–269.

150. Pengpid S, Peltzer K. Prevalence, awareness, treatment and control of hypertension among adults in Kenya: cross-sectional national population-based survey. *East Mediterr Health J* 2020; **26**:923–932.

151. van de Vijver SJ, Oti SO, Agyemang C, Gomez GB, Kyobutungi C. Prevalence, awareness, treatment and control of hypertension among slum dwellers in Nairobi, Kenya. *J Hypertens* 2013; **31**:1018–1024.

152. Mohamed SF, Mutua MK, Wamai R, Wekesa F, Haregu T, Juma P, et al. Prevalence, awareness, treatment and control of hypertension and their determinants: results from a national survey in Kenya. *BMC Public Health* 2018; **18**:1219.

153. Dzudie A, Kengne AP, Muna VF, Ba H, Menanga A, Kouam Kouam C, et al. Prevalence, awareness, treatment and control of hypertension in a self-selected sub-Saharan African urban population: a cross-sectional study. *BMJ Open* 2012; **2**:e001217.

154. Odili AN, Chori BS, Danladi B, Nwakile PC, Okoye IC, Abdullahi U, et al. Prevalence, awareness, treatment and control of hypertension in Nigeria: data from a nationwide survey 2017. *Glob Heart* 2020; **15**:47.

155. Awuah RB, Anarfi JK, Agyemang C, Ogedegbe G, Aikins A. Prevalence, awareness, treatment and control of hypertension in urban poor communities in Accra, Ghana. *J Hypertens* 2014; **32**:1203–1210.

156. Pedro JM, Brito M, Barros H. Prevalence, awareness, treatment and control of hypertension, diabetes and hypercholesterolemia among adults in Dande municipality, Angola. *Cardiovasc J Afr* 2018; **29**:73–81.

157. Lemogoum D, Van de Borne P, Lele CEB, Damasceno A, Ngatchou W, Amta P, et al. Prevalence, awareness, treatment, and control of hypertension among rural and urban dwellers of the Far North Region of Cameroon. *J Hypertens* 2018; **36**:159–168.

158. Muhihaji AJ, Anaeli A, Mpembeni RNM, Sunguya BF, Leyna G, Kakoko D, et al. Prevalence, awareness, treatment, and control of hypertension among young and middle-aged adults: results from a community-based survey in Rural Tanzania. *Int J Hypertens* 2020; **2020**:9032476.

159. Pilleron S, Aboyans V, Mbelessso P, Ndamba-Bandouzi B, Desormais I, Lacroix P, et al. Prevalence, awareness, treatment, and control of hypertension in older people in Central Africa: the EPIDEMCA study. *J Am Soc Hypertens* 2017; **11**:449–460.

160. Muhammedhussein MS, Nagri ZI, Manji KP. Prevalence, risk factors, awareness, and treatment and control of hypertension in Mafia Island, Tanzania. *Int J Hypertens* 2016; **2016**:1281384.

161. Mosha NR, Mahande M, Juma A, Mboya I, Peck R, Urassa M, et al. Prevalence, awareness and factors associated with hypertension in North West Tanzania. *Glob Health Action* 2017; **10**:1321279.

162. Venter PC, Malan L, Schutte AE. Psychosocial stress but not hypertensive status associated with angiogenesis in Africans. *Blood Press* 2014; **23**:307–314.

163. Diarz Ej, Leyaro Bj, Kivuyo SL, Ngowi Bj, Msuya SE, Mfinanga SG, et al. Red meat consumption and its association with hypertension and hyperlipidaemia among adult Maasai pastoralists of Ngorongoro Conservation Area, Tanzania. *PLoS One* 2020; **15**:e0233777.

164. Olack B, Wabwire-Mangen F, Smeeth L, Montgomery JM, Kiwanuka N, Breiman RF. Risk factors of hypertension among adults aged 35–64 years living in an urban slum Nairobi, Kenya. *BMC Public Health* 2015; **15**:1251.

165. Msembo OA, Schmiegelow C, Nielsen BB, Kousholt H, Grunnet LG, Christensen DL, et al. Risk factors of pre-hypertension and hypertension among non-pregnant women of reproductive age in northeastern Tanzania: a community based cross-sectional study. *Trop Med Int Health* 2018; **23**:1176–1187.

166. Pastakia SD, Ali SM, Kamano JH, Akanalo CO, Ndege SK, Buckwalter VL, et al. Screening for diabetes and hypertension in a rural low income setting in western Kenya utilizing home-based and community-based strategies. *Global Health* 2013; **9**:21.

167. Twinamasiko B, Lukenge E, Nabawanga S, Nansalire W, Kobusingye L, Ruzaaza G, et al. Sedentary lifestyle and hypertension in a periurban area of Mbarara, South Western Uganda: a population based cross sectional survey. *Int J Hypertens* 2018; **2018**:8253948.

168. Owolabi EO, Goon DT, Adeniyi OV, Seekoe E. Social epidemiology of hypertension in Buffalo City Metropolitan Municipality (BCMM): cross-sectional study of determinants of prevalence, awareness, treatment and control among South African adults. *BMJ Open* 2017; **7**:e014349.

169. Abdulsalam S, Olugbenga-Bello A, Olarewaju O, Abdus-Salam I. Sociodemographic correlates of modifiable risk factors for hypertension in a rural local government area of Oyo state South west Nigeria. *Int J Hypertens* 2014; **2014**:842028.

170. Gatimu SM, John TVV. Socioeconomic inequalities in hypertension in Kenya: a decomposition analysis of 2015 Kenya STEPwise survey on non-communicable diseases risk factors. *Int J Equity Health* 2020; **19**:213.

171. Fikadu G, Lemma S. Socioeconomic Status and hypertension among teachers and bankers in Addis Ababa, Ethiopia. *Int J Hypertens* 2016; **2016**:4143962.

172. Onyango MJ, Kombe I, Nyamongo DS, Mwangi M. A study to determine the prevalence and factors associated with hypertension among employees working at a call centre Nairobi Kenya. *Pan Afr Med J* 2017; **27**:178.

173. Fezeu L, Kengne AP, Balkau B, Awah PK, Mbanya JC. Ten-year change in blood pressure levels and prevalence of hypertension in urban and rural Cameroon. *J Epidemiol Community Health* 2010; **64**:360–365.

174. Okwuonu CG, Ngoka SC, Chimezie OJ, Eze TH, Uwanuochi K, Mbanaso AU. Towards prevention of hypertension in Nigeria: a study of prehypertension and its associations among apparently healthy adults in Umuahia, South-East Nigeria. *Int J Prev Med* 2015; **6**:61.

175. Dereje N, Earsido A, Temam L, Abebe A. Uncovering the high burden of hypertension and its predictors among adult population in hossanna town, southern Ethiopia: a community-based cross-sectional study. *BMJ Open* 2020; **10**:e035823.

176. Wachamo D, Geleta D, Woldesemayat EM. Undiagnosed hypertension and associated factors among adults in Hawela Tula Sub-City, Hawassa, Southern Ethiopia: a community-based cross-sectional study. *Risk Manag Healthc Policy* 2020; **13**:2169–2177.

177. Bushara SO, Noor SK, Elmadhoun WM, Sulaiman AA, Ahmed MH. Undiagnosed hypertension in a rural community in Sudan and association with some features of the metabolic syndrome: how serious is the situation? *Ren Fail* 2015; **37**:1022–1026.

178. Osman S, Costanian C, Annan NB, Fouad FM, Jaffa M, Sibai AM. Urbanization and socioeconomic disparities in hypertension among older adult women in Sudan. *Ann Glob Health* 2019; **85**:29.

179. Lategan R, Van den Berg VL, Ilich JZ, Walsh CM. Vitamin D status, hypertension and body mass index in an urban black community in mangaung, South Africa. *Afr J Prim Health Care Fam Med* 2016; **8**:e1–e5.

180. Riley L, Guthold R, Cowan M, Savin S, Bhatti L, Armstrong T, et al. The World Health Organization STEPwise approach to noncommunicable disease risk-factor surveillance: methods, challenges, and opportunities. *Am J Public Health* 2016; **106**:74–78.

181. Jones ES, Damasceno A, Ogola EN, Ojji DB, Dzudie A, Rayner BL. PASCAR commentary on the international society of hypertension global guidelines 2020: relevance to sub-Saharan Africa. *Cardiovasc J Afr* 2020; **31**:325–329.

182. Ataklte F, Ergou S, Kaptoge S, Taye B, Echouffo-Tcheugui JB, Kengne AP. Burden of undiagnosed hypertension in sub-saharan Africa: a systematic review and meta-analysis. *Hypertension* 2015; **65**:291–298.

183. Chen A, Chan YK, Mocumbi AO, Ojji DB, Waite L, Beilby J, et al. Hypertension among people living with human immunodeficiency virus in sub-Saharan Africa: a systematic review and meta-analysis. *Sci Rep* 2024;14:16858.

184. Damasceno A, Mayosi BM, Sani M, Ogah OS, Mondo C, Ojji D, et al. The causes, treatment, and outcome of acute heart failure in 1006 Africans from 9 countries. *Arch Intern Med* 2012;172:1386–1394.

185. Karaye KM, Dokainish H, ElSayed A, Mondo C, Damasceno A, Sliwa K, et al. Clinical profiles and outcomes of heart failure in five African countries: results from INTER-CHF study. *Glob Heart* 2021;16:50.

186. Owolabi MO, Sarfo F, Akinyemi R, Gebregziabher M, Akpa O, Akpalu A, et al. Dominant modifiable risk factors for stroke in Ghana and Nigeria (SIREN): a case-control study. *Lancet Glob Health* 2018;6:e436–e446.

187. Stewart S, Wilkinson D, Hansen C, Vaghela V, Mvungi R, McMurray J, et al. Predominance of heart failure in the Heart of Soweto study cohort: emerging challenges for urban African communities. *Circulation* 2008;118:2360–2367.

188. Shoz S, Monyeki MA, Moss SJ, Pienaar C. Relationships between physical activity, body mass index, waist circumference and handgrip strength amongst adults from the North West province, South Africa: the PURE study. *Afr J Prim Health Care Fam Med* 2022;14:e1–e11.

189. O'Donnell MJ, Chin SL, Rangarajan S, Xavier D, Liu L, Zhang H, et al. Global and regional effects of potentially modifiable risk factors associated with acute stroke in 32 countries (INTERSTROKE): a case-control study. *Lancet* 2016;388:761–775.

190. Hankey GJ. Population impact of potentially modifiable risk factors for stroke. *Stroke* 2020;51:719–728.

191. Luo D, Cheng Y, Zhang H, Ba M, Chen P, Li H, et al. Association between high blood pressure and long term cardiovascular events in young adults: systematic review and meta-analysis. *BMJ* 2020;370:m3222.

192. Chen A, Mocumbi AO, Ojji DB, Waite L, Chan YK, Beilby J, et al. Projected burden and distribution of elevated blood pressure levels and its consequence among adolescents in sub-Saharan Africa. *J Glob Health* 2024;14:04136.

193. Huang Y, Meng L, Liu C, Liu S, Tao L, Zhang S, et al. Global burden of disease attributable to high systolic blood pressure in older adults, 1990–2019: an analysis for the Global Burden of Disease Study 2019. *Eur J Prev Cardiol* 2023;30:917–927.

194. Ojji DB, Mayosi B, Francis V, Badri M, Cornelius V, Smythe WV, et al. Comparison of dual therapies for lowering blood pressure in black Africans. *N Engl J Med* 2019;380:2429–2439.

195. Ojji DB, Shedul GL, Sani M, Ogah OS, Dzudie A, Barasa F, et al. A differential response to antihypertensive therapy in African men and women: insights from the CREOLE trial. *Am J Hypertens* 2022;35:551–560.

196. Ojji DB, Salam A, Sani MU, Ogah OS, Schutte AE, Huffman MD, et al. Low-dose triple-pill vs standard-care protocols for hypertension treatment in Nigeria: a randomized clinical trial. *JAMA* 2024;332:1070–1079.